Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 17(3): e1008870, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33784299

RESUMO

The emerging tumor-on-chip (ToC) approaches allow to address biomedical questions out of reach with classical cell culture techniques: in biomimetic 3D hydrogels they partially reconstitute ex vivo the complexity of the tumor microenvironment and the cellular dynamics involving multiple cell types (cancer cells, immune cells, fibroblasts, etc.). However, a clear bottleneck is the extraction and interpretation of the rich biological information contained, sometime hidden, in the cell co-culture videos. In this work, we develop and apply novel video analysis algorithms to automatically measure the cytotoxic effects on human cancer cells (lung and breast) induced either by doxorubicin chemotherapy drug or by autologous tumor-infiltrating cytotoxic T lymphocytes (CTL). A live fluorescent dye (red) is used to selectively pre-stain the cancer cells before co-cultures and a live fluorescent reporter for caspase activity (green) is used to monitor apoptotic cell death. The here described open-source computational method, named STAMP (spatiotemporal apoptosis mapper), extracts the temporal kinetics and the spatial maps of cancer death, by localizing and tracking cancer cells in the red channel, and by counting the red to green transition signals, over 2-3 days. The robustness and versatility of the method is demonstrated by its application to different cell models and co-culture combinations. Noteworthy, this approach reveals the strong contribution of primary cancer-associated fibroblasts (CAFs) to breast cancer chemo-resistance, proving to be a powerful strategy to investigate intercellular cross-talks and drug resistance mechanisms. Moreover, we defined a new parameter, the 'potential of death induction', which is computed in time and in space to quantify the impact of dying cells on neighbor cells. We found that, contrary to natural death, cancer death induced by chemotherapy or by CTL is transmissible, in that it promotes the death of nearby cancer cells, suggesting the release of diffusible factors which amplify the initial cytotoxic stimulus.


Assuntos
Apoptose/fisiologia , Técnicas de Cocultura/métodos , Linfócitos T Citotóxicos , Microambiente Tumoral/fisiologia , Linhagem Celular Tumoral , Biologia Computacional , Fibroblastos/citologia , Fibroblastos/fisiologia , Humanos , Cinética , Técnicas Analíticas Microfluídicas , Microscopia de Vídeo , Linfócitos T Citotóxicos/citologia , Linfócitos T Citotóxicos/fisiologia
2.
Cell Rep Med ; 1(7): 100127, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33205076

RESUMO

Accumulation of CD103+CD8+ resident memory T (TRM) cells in human lung tumors has been associated with a favorable prognosis. However, the contribution of TRM to anti-tumor immunity and to the response to immune checkpoint blockade has not been clearly established. Using quantitative multiplex immunofluorescence on cohorts of non-small cell lung cancer patients treated with anti-PD-(L)1, we show that an increased density of CD103+CD8+ lymphocytes in immunotherapy-naive tumors is associated with greatly improved outcomes. The density of CD103+CD8+ cells increases during immunotherapy in most responder, but not in non-responder, patients. CD103+CD8+ cells co-express CD49a and CD69 and display a molecular profile characterized by the expression of PD-1 and CD39. CD103+CD8+ tumor TRM, but not CD103-CD8+ tumor-infiltrating counterparts, express Aiolos, phosphorylated STAT-3, and IL-17; demonstrate enhanced proliferation and cytotoxicity toward autologous cancer cells; and frequently display oligoclonal expansion of TCR-ß clonotypes. These results explain why CD103+CD8+ TRM are associated with better outcomes in anti-PD-(L)1-treated patients.


Assuntos
Antineoplásicos Imunológicos/uso terapêutico , Linfócitos T CD8-Positivos/imunologia , Carcinoma Pulmonar de Células não Pequenas/imunologia , Neoplasias Pulmonares/imunologia , Linfócitos do Interstício Tumoral/imunologia , Receptor de Morte Celular Programada 1/imunologia , Antígenos CD/genética , Antígenos CD/imunologia , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/genética , Antígeno B7-H1/imunologia , Antígenos CD8/genética , Antígenos CD8/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/patologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Citotoxicidade Imunológica/efeitos dos fármacos , Regulação da Expressão Gênica , Humanos , Fator de Transcrição Ikaros/genética , Fator de Transcrição Ikaros/imunologia , Memória Imunológica , Imunoterapia/métodos , Cadeias alfa de Integrinas/genética , Cadeias alfa de Integrinas/imunologia , Interleucina-17/genética , Interleucina-17/imunologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/mortalidade , Ativação Linfocitária/efeitos dos fármacos , Contagem de Linfócitos , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Linfócitos do Interstício Tumoral/patologia , Fosforilação , Prognóstico , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/genética , Estudos Retrospectivos , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/imunologia , Transdução de Sinais , Análise de Sobrevida , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia
3.
Front Immunol ; 10: 1505, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31333652

RESUMO

Recent advances in lung cancer treatment are emerging from new immunotherapies that target T-cell inhibitory receptors, such as programmed cell death-1 (PD-1). However, responses to anti-PD-1 antibodies as single agents are observed in fewer than 20% of non-small-cell lung cancer (NSCLC) patients, and immune mechanisms involved in the response to these therapeutic interventions remain poorly elucidated. Accumulating evidence indicates that effective anti-tumor immunity is associated with the presence of T cells directed toward cancer neoepitopes, a class of major histocompatibility complex (MHC)-bound peptides that arise from tumor-specific mutations. Nevertheless, tumors frequently use multiple pathways to escape T-cell recognition and destruction. In this regard, primary and acquired resistance to immune checkpoint blockade (ICB) therapy was associated with alterations in genes relevant to antigen presentation by MHC-class I/beta-2-microglobulin (MHC-I/ß2m) complexes to CD8 T lymphocytes. Among additional known mechanisms involved in tumor resistance to CD8 T-cell immunity, alterations in transporter associated with antigen processing (TAP) play a major role by inducing a sharp decrease in surface expression of MHC-I/ß2m-peptide complexes, enabling malignant cells to evade cytotoxic T lymphocyte (CTL)-mediated killing. Therefore, development of novel immunotherapies based on tumor neoantigens, that are selectively presented by cancer cells carrying defects in antigen processing and presentation, and that are capable of inducing destruction of such transformed cells, is a major challenge in translational research for application in treatment of lung cancer. In this context, we previously identified a non-mutant tumor neoepitope, ppCT16-25, derived from the preprocalcitonin (ppCT) leader sequence and processed independently of proteasomes/TAP by a mechanism involving signal peptidase (SP) and signal peptide peptidase (SPP). We also provided in vitro and in vivo proof of the concept of active immunotherapy based on ppCT-derived peptides capable of controlling growth of immune-escaped tumors expressing low levels of MHC-I molecules. Thus, non-mutant and mutant neoepitopes are promising T-cell targets for therapeutic cancer vaccines in combination with ICB. In this review, we summarize current treatments for lung cancer and discuss the promises that conserved neoantigens offer for more effective immunotherapies targeting immune-escaped tumor variants.


Assuntos
Apresentação de Antígeno , Antígenos de Neoplasias/imunologia , Carcinoma Pulmonar de Células não Pequenas , Epitopos de Linfócito T/imunologia , Imunoterapia , Neoplasias Pulmonares , Linfócitos T Citotóxicos , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/terapia , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/terapia , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/patologia
4.
Nat Commun ; 10(1): 3345, 2019 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-31350404

RESUMO

Neuropilin-1 (Nrp-1) is a marker for murine CD4+FoxP3+ regulatory T (Treg) cells, a subset of human CD4+ Treg cells, and a population of CD8+ T cells infiltrating certain solid tumours. However, whether Nrp-1 regulates tumour-specific CD8 T-cell responses is still unclear. Here we show that Nrp-1 defines a subset of CD8+ T cells displaying PD-1hi status and infiltrating human lung cancer. Interaction of Nrp-1 with its ligand semaphorin-3A inhibits migration and tumour-specific lytic function of cytotoxic T lymphocytes. In vivo, Nrp-1+PD-1hi CD8+ tumour-infiltrating lymphocytes (TIL) in B16F10 melanoma are enriched for tumour-reactive T cells exhibiting an exhausted state, expressing Tim-3, LAG-3 and CTLA-4 inhibitory receptors. Anti-Nrp-1 neutralising antibodies enhance the migration and cytotoxicity of Nrp-1+PD-1hi CD8+ TIL ex vivo, while in vivo immunotherapeutic blockade of Nrp-1 synergises with anti-PD-1 to enhance CD8+ T-cell proliferation, cytotoxicity and tumour control. Thus, Nrp-1 could be a target for developing combined immunotherapies.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Imunoterapia , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/terapia , Neuropilina-1/imunologia , Animais , Movimento Celular , Feminino , Humanos , Imunidade Celular , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/fisiopatologia , Linfócitos do Interstício Tumoral/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Neuropilina-1/genética , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/imunologia , Semaforina-3A/imunologia , Linfócitos T Citotóxicos/citologia , Linfócitos T Citotóxicos/imunologia
5.
Cancer Res ; 76(7): 1757-69, 2016 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-26921343

RESUMO

Homing of CD8(+) T lymphocytes to the tumor microenvironment is an important step for mounting a robust antitumor immune response. TGFß is responsible for CD103 (αEß7) integrin induction in activated intraepithelial CD8(+) T lymphocytes. However, the interplay between TGFß and CD103 and their contribution to T-cell infiltration and antitumor activity remain unknown. Here, we used viable human lung tumor slices and autologous tumor antigen-specific T-lymphocyte clones to provide evidence that CD103 is directly involved in T-lymphocyte recruitment within epithelial tumor islets and intratumoral early T-cell signaling. Moreover, TGFß enhanced CD103-dependent T-cell adhesion and signaling, whereas it inhibited leukocyte function-associated antigen (LFA)-1 (αLß2) integrin expression and LFA-1-mediated T-lymphocyte functions. Mechanistic investigations revealed that TGFß bound to its receptors (TGFBR), which promoted the recruitment and phosphorylation of integrin-linked kinase (ILK) by TGFBR1. We further show that ILK interacted with the CD103 intracellular domain, resulting in protein kinase B (PKB)/AKT activation, thereby initiating integrin inside-out signaling. Collectively, our findings suggest that the abundance of TGFß in the tumor microenvironment may in fact engage with integrin signaling pathways to promote T-lymphocyte antitumor functions, with potential implications for T-cell-based immunotherapies for cancer. Cancer Res; 76(7); 1757-69. ©2016 AACR.


Assuntos
Antígenos CD/metabolismo , Complexo CD3/metabolismo , Cadeias alfa de Integrinas/metabolismo , Neoplasias Pulmonares/metabolismo , Linfócitos T/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Microscopia Confocal , Transdução de Sinais , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...